Static Security
A WAIESINTAY

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

What is Static Security Analysis (SSA)?

Static security analys{SSAavailable vith Intel® Parallel Studio X&tempts to identify errors and security weaknesses

through deep analysis of source cod&SA is primarily aimed at developers and QA engineers who wish to harden their application
against security attaclSince many security weaknesses are also B§prBvides an effective way to discover defects,

especially in code that is hard to exercise thoroughly with &#scan also detect race conditions resulting from misuse of

parallel programming frameworks such as OpenMP and Intel Cilk Plus.

While thevariety of security attacks is practically unlimited, a number of common patterns have emerged. Probably the single
biggest root cause of security weaknesses is the failure to adequately scredatmpgpecially data obtained from a remote
user.Once an attacker has found an application weakness, they may be able to exploit that weakness to inject and execute
malicious code. This often involves corrupting memory through a buffer overflow or other kind of bounds violatidoroddhus two
themes energe: protecting the integrity of memory under all circumstances and avoiding unsafe use of unchecked input.

Many patterns of unsafe usage can be discovered through static afdlgsizain advantage of static analysis over dynamic
analysis is that ib@mines all possible execution paths and variable values, not just those that are provoked during testing. This
aspect of static analysis is especially valuable in security assurance, since security attacks often exercise &n application
unforeseen andntested ways SSA can detect over 250 different error conditions.

This document is an introductory tutorial describing the static security analysis feature of the Intel® Parallét StodidesE
brief description of the goals of the productdea and walks through an etadend example showing how it is used.

Topic

How Does SSAWork?
Setting Up for SSA

C++ Tutorial

Running SSA and Opening the Results in Intel® Inspector XE

Interacting with the Analysis Results

Investigating a Problem

Reducing Clutter with Filtering

Fixing a Problem andRescanning

Fortran Tutorial

Additional Resources

How Does SSAWork?

Static security analysisgsrformed by the InteC++ and the Intel® Fortraontilers operating in a special mode. In this mode the
compiler dedicates more timestooranalysis and bypasses the instruction generation process entirely. This allows it to find errors
that go undetected during ordinary compilat&8®&requires yor code to compile without serious errors using the Intel Compiler,

but you do not execute the results of this compilatfamu do not need to use Intel compiler to create your production binaries in
order to take advantage of SSA. We will begin theafuseth showing how to prepare an application for SSA.

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

SSA can be done on a partial program or a library, but it works best when operating on an entire program. Ekecis individual fi
compiled into an object module, and the analysis results are ¢ghaidhedink step. The results are then viewed in Intel® Inspector
XE.

The results of static analysis are often inconclusive. The tool results are best thougtteotiatproblems deserving
investigation. You will have to determine whethersrixjuired or not. The Intel Inspector XE GUI is designed to facilitate this
process. You indicate the results of your analysis by assigning a state to each problem in the result. Intel ingsettter XE s
state information in its result files.

Overtime the source will change and you will want to repeat the analysis. The first time you open your new analys result in In
Inspector XE, it automatically calculates a correspondence between the previous result and the new result. It uses this
correpondence to initialize the state information for the new result. This means you do not have to investigate the same issues
over and over again.

When you decide a problem does require fixing you should report it into your normal bug tracking syymmypugtaeport a
defect detected by an executable test. Intel Inspector XE is not a bug tracking system. The state information tapkesyour p
in investigating the result of analysis. What you do with your conclusions is outside the sacpedah8dntel Parallel Studio
XE..

Setting Up for SSA

The set up process is usually fairly simple, but it can be quite complicated, depending on the situation. We recodifyend you m
your build procedure (whatever it is) to create somédd configutdon for SSA. The term build configuration refers to a mode of
building your application, using specific compiler options and directing the intermediate files to specific direetopiesatitiess

have at least two build configurations: debug dedse. You will want to create one more for SSA. The SSA configuration must
build with the Intel compiler with additional options set to enable SSA.

Please note the distinction between creating a new build configuration and building an existingieonfigiuiedditional

options. If you build, say, your debug configuration with the additional options that enable SSA then you wilresilt dgsis

long as your debug configuration builds with the Intel compiler). This is a perfectly godd amynitial product evaluation.
However, itds awkward to work this way on an ongoing basis,
debugmode object modules every time you run SSA. Just as you want to keep debug objestpaoaiddsom release object

modules, you will want to keep debug object modules separate from SSA object modules. If you are going to use S&A on an ongo
basis, you will want to get set up properly.

The process for creating a new build configuratibbevdifferent for each application. If your application is built under an IDE, such
as Microsoft* Visual Studio* or Eclipse*, the IDE makes it very easy to add new build configurations. The sansplsegjatication
this tutorial can be built undéisual Studio on Microsoft* Windows* OS or with a make file on Linux* OS. We will walk through the
steps needed to update this make file for SSA.

I'f your application build is very compl exisanmlierngticeisetagpondt f eel
met hod. You can execute your n o #in|e.l Thibapplidatbn interodmsrprocesso wat c her 6
creations and recognizes all the compilation and link steps performed during your build. i refmrdattbn in build

specificatiorfile. This file can be supplied as input to another utility,-msyee which invokes the Intel compiler to repeat the

same build steps as your original build did. These utilities are not explained irathis tutor

Starting the Tutorial

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

This tutorial can be executed on Windows or on Linux OS. It can also be done using a C++ or Fortran sample abyliddtion. You
pick the configuration(s) you prefer. The C+¥Fantichntutorials are described separatdlize differences between Linux OS and
Windows OS are small and these cases are described together. When we come to a step that is done differently on Windows and
Linux OS, we will say something |Iike 00On Windows OS, do ¢é6¢

To follow the C++ tutorial, contain the following section. To follow the Fortran tutorial, go otfieanTutorialsection.

C++ Tutorial

We willbeusingarsp | e application called O0tachyon_ssab6. You can find
the Osamples6é6 subdirectory. Unzip this application to some

We will start by getting set up for SSA. This is difeesdtly on Windows and Linux OS. For Windows OS read the following
section. For Linux OS, g8tdting up for SSA Using a make File on Linux* OS

Setting up for SSA Using Microsoft* Visual Studio* on Windows* OS

We will go through the setup process using Visual Studio solution sichyainis supplied with the sample program. Start by
opening this solution in Visual Studio. If you are using Visual Studio 2008 or Visual Studio 2010 then Visual &tuio will ne
convert for solution file from Visual Studio 2005 format. Let it galael do this conversion.

Create a new build configuration as follows:

1. Select theBuild> Configuration Managserenu item to open the configuration manager

2. In the upper left dregown control, seletl e w é

3. In theNew Solution Configuratioiielog box,et the name t8SAand set taCopy setting frono Debug

4. ClickOKto dismiss the New Solution Configuration dialog andClbsgo dismiss the Configuration Manager.

Before you can set the options on your new build configuration, you need to sgethegbaild with the Intel compiler. Follow
these steps:

1. Right click theachyonproject in the solution explorer and selecttiet el C++ Composer méiten0 11> Use
and cliclOKon the confirmation dialog. You will see that the icahdgroject in the solution explorer has changed to
indicate it will be built using the Intel compiler.
Now you are ready to set the properties for SSA. Right ciakhienproject and sele® r o p e Ogen teeS+é >
Diagnosticproperty page. od will see the following dialog:

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

tachyon Property Pages ilil

Configuration: IACt'Ive(SSA) j Platform: IACt'IUe(WrIn32) j Configuration Manager... |
= Configuration Properties | Intel Specific - General
- General Error Limit
- Debugging Disable Specific Diagnostics
- Intel Debugging Emit Diagnostics to File No
B CfC++ Diagnostics File $(IntDir)/$(TargetName).diag
- General E Intel Specific - Guided Auto Parallelism
- Debug Guided Auto Parallelsm Analysis Disable
- Optimization Emit Guided Auto Paralelism Diagnostics tc No
- Preprocessor Guided Auto Paralleism Diagnostics File ~ $(IntDir)/$(TargetName).gap
- Code Generation Guided Auto Parallelism Code Selection Opt
- Language E Intel Specific - Optimization Diagnostics
- Precompiled Header Optimization Diagnostic Level Disable
- Qutput Files Emit Optimization Diagnostics to File No
-~ Browse Information Optimization Diagnostics File $(IntDir)/$(TargetName).rep
- Diagnostics Optimization Diagnostic Phase All optimizer phases
- Advanced Optimization Diagnostic Routine
- Command Line E Intel Specific - Static Analysis
- Linker Level of Static Securi None =
- Manifest Tool Static Security Analysis Results Directory My Inspector XE Results - $(ProjectName)
- Browse Information Analyze Include Files No
- Build Events
- Custom Build Step
Level of Static Security Analysis
| | _I Enables static security analysis and specifies the level of diagnostics. Static security analysis precludes i...
4 »

OK I Cancel Apply

Set theLevel of Static Security Analysjgion toAll Errors and Warnings (/Qdiagble:sc3)nd clicloK

Thatds it; you are now set up for SSA.

For information on setting up applications built using a commarmdifineranake file, see the following section explaining the
setup process on Linux OS.

Setting up for SSA Using a make File on Linux* OS

The sample application comes with a make file that can be used to build the application on Linux OS. To lsave iciaded

two versions of the make file. One is the original matacfilgon.mk This make file builds the application using the gcc compiler.
The other is the updated make téehyon_ssa.mkhat adds a new build target, SSA. The SStatygtdis just like the debug

build target except for these changes:

1 It builds using the Intel compiler
T I't adds the -dad@nadablomadcdPti on 0
1 It puts the intermediate files in the SSA subdirectory.

You can compare the two make files to sedliffierences. This illustrates the changes that are needed to update a make file to
prepare for SSA.

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

Running SSA and Opening the Results in Intel® Inspector XE

Now that you are set up, all you have to do is build your SSA build configuration to pgsggm@maVindows OS, you can do this
by rightclicking théachyonproject in the solution explorer and chooBinilld On Linux OS, you can do this by performing the
following steps:

1. Open acommand shell
Set the environment variables for the Intel compiler by executiicty#re.sh script in the compiler bin directory,
supplying théa32 option.

3. Executemake 7 f tachyon_ssa.mk

TIP: keep this command window open for later operations.

On Windows OS, theel® Inspector XE automatically opens a new result as soon as the build completes. On Linux OS, type
inspxe -gui to invoke the Intel Inspector XE and then us€ilee> Opemenu to open the result. By default, the file you want
to open is called00sc. inspxe , and is contained in a directory nar@@@sc below the root directory of the tachyon project.

Interacting with the Analysis Results

The remainder of this tutorial is almost identical for Windows and Linux OS. The main difference is that@8,\Wiadotes
Inspector XE GUI is embedded within Visual Studio, while on Linux OS the GUI runslaseymaagiém. The look of the
individual Intel Inspector XE windows is almost identical on Windows and Linux OS.

The initial window you will sedlwook something like this. (Note: you might have to drag the scrollbar up to the top to get the right
line on top.)

} E Static Security Analysis (SSA)

P source Code Secu rity Errors

¢ Summary

D L Problem Sources State Weight Category !

Intel Inspector XE 2011

Severity
P38y @ Uninitialized variable vol.cpp New 100 Initialization Error 72 item(s)
j\rol.cpp[QQJ: error #12143: "tex-=opacity" is uninitialized | Warning 73 item(s)
P70 @ F t T t mi tch it M a5 F t Pro
ormat to arg count mismatd getargs.cpp aw orma Bad free 1 item(s)
ﬁgetargs.cpp(?ﬁ): error #12068: number of format specifiers does not match number of arguments | Big arg passed by value 42 item(s)
Pl @ Bad free find_and_fix_memory_errors.cpp Mew 80 Memory Bounds violation on string 4 item(s)
find_and_fix_memory_errors.cpp(175): error #12375: referenced memory allocated through "operator new" is illegally Dead assignment 18 ftem(s)
deallocated through "free" Dead statement 28 item(s)
— - - Default initialization 1 item(s)
P69 @ Divide by zero (possible) cylinder.cpp MNew 75 Other Divide by zero (possible) 1 tem(s)
jcy\inder.cpp[ﬁl]: error #12062: possible divide by zero | ™[more
P73 @ Unsafe format specifier parse.cpp New 70 Format Source
parse.cpp(187): error #12329: specify field width in format specifier to avoid buffer overflow on argument 3 in call to apl.cpp 17 item(s)
"fscanf” apigeom.cpp 8 item(s)
- apitrigeom.cpp 6 item(s)
P74 @ Unsafe format specifier parse.cpp MNew 70 Format bndbox.cpp Litem(s)
Wparse.cpp(ZM]: error #12329: specify field width in format specifier to avoid buffer overflow on argument 3 in call to ‘ box.cpp 1 item(s)
fcand coordsys.cpp 2 item(s)
P75 @ Unsafe format specifier parse.cpp New 70 Format ™| more
parse.cpp(305): error #12329: specify field width in format spedifier to avoid buffer overflow on argument 3 in call to State
"fscanf" ~ [nHew 145 item(s)
Category
C++ 12 item(s)
D Description & Source Function State Format 14 item(s)
%93 Uninitialized read vol.cpp:99 wvoid * newscalarvol(void *,struct vector, struct vector,int,int,int,char *,struct ... New Tnitialization 4 item(s)
Memory 4 item(s)
Other 45 item(s)
Pointer 10 item(s)
il more
Suppressed
Mot suppressed 145 itemn(s)
Investigated
Not investigated 145 item(s)
This window consists of three main areas. The thipgpysr pa

need to investigate. The lower left pane shows the code locations corresponding to the currently selected probleghtset. The
pane shows the filters. It controls what problem sets are displayed and which are hidden.

You can sort the table of pramblsets by clicking on any of the column headers. By default the problem set table is sorted by

weight The weight is a value between 1 and 100 which reflects how interesting a problem is. Problems that can do more damage
have higher weight. Problematthre more likely to be true problems (as opposed to false positives) are also given higher weight.
So the weight provides a natural guidance for your order of investigation.

Investigating a Problem

Letds start with an easyl oseée, i B7an uheafeufbhmahesprctfier
probleminitially, all we know about the problem is summarized in the table entry:

F73 @ Unsafe format specifier parse.cpp Mew 70 Format

parse.cpp(187): error #12329: specify field width in format specifier to avoid buffer overflow on argument 3 in call to
"fscanf"

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

Unsafe format specifiés the short description of the problem. The full descrigidnsswn i n t he shaded area.

the state column indicates that this problem was discovered for the first time in this analysis run and has not ystigaged.inve

The 70 weight value indicates mahe ,wevihgtth. meme d & tstglegso e | aft em
format specifications.

Click on this problem to select it. The lower pane refreshes itself to show the source code locations relatedo.this prblbéer e 6 s
what it says:

jinj Description | Source Function | State

FX74 Format mismatch parse.cpp:187 unsigned int GetString(struct _iobuf *,char const *) Mew

Here we see the source location (file parse.cpp, line 187). We also see the role that this source reference fikgys.in the pro
Format mismatcindicates that this is a place where a format string was used. It also shows the name of the furcctntairtisat
the line (GetString) and its parameter signature.

One way we could get more information about a problem is to read an explanation of v View Source
that problem type means. Some SSA errors are pretty technical and require explanatit =4 Copy to Clipboard
see the explanain for this problem type, right click the problem. That brings up-tyis poj Explain Problem
menu:

Change State G
SelectExplain Probleta open a help topic that explains this problem in detail. This is the
help topic for this particular problem type:

Unsafe format specifier

Some forms of formatted input can cause buffer overflow and should not be used.

Care must be taken on formatted input to avoid buffer overflow. In particular, the "%s" input
format is inherently unsafe. A better alternative is "%ddds" or "%*s", where ddd is the sized of
the destination buffer, for example "%?24s". If the buffer size is not a compile time constant,
then "%%*s" can be used, where "*" obtains the maximum size from the next input argument, for
example, scanf("%%*s", sizeof(buffer), buffer);

1 Format mismatch The unsafe formatted input statement

Example
#include <stdio.h>
char buffer[1024];

int main(int argc, char **argv)

{
scanf ("%s", buffer); // unsafe: could overflow buffer
// better is scanf("%*s", sizeof (buffer), buffer);
printf("read %s\n", buffer);
return 0;

Copyright © 2010, Intel Corporation. All rights reserved.

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

As you can see, the problgme reference material explains more fully what the precise error condition is and its potential
consequences. It explains more fully the role the various code locations play in creating the problem, and provedégman examp
demonstrates the problekvhere possible, it also provides better alternatives to avoid this issue

The next thing we need to do is determine whether this problem is really present in our application. To do thatpuleateed to
the source code. The fastest way to do thab isxpand the code reference in the lower pane to expose a small snippet at the
referenced location. There are two ways to do this. One is to click the plus sign in the ID column. The ofti@ki®iothight
item in the | owenrd pAdne Caondde sSentupprerelt @Eexypiladochis, youhwél sep thig:

1D Description & |Source |Function |State
EX74 Format mismatch parse.cpp:187 unsigned int GetString(struct _iobuf *,char const *) New
185 char datal[255];
186
187 fscanf (dfile, "%=",data)
188 if (stringcmp (data, string) '= 0) {
189 fprintf (stderr, "parse: Expected %=, got %= \n",string, data):
This is pretty clear. The highlighted call to rdcterguptof has a
the next newline and storestdeat a i n the array odatad. There is no guarant e

the bounds of the array, so this statement could corrupt memory. We got lucky here, because the code snippet eontained all w
needed to know about thisoblem. We will see later how we see more of

the source when we need to.
View Source

Since we have confirmed that t h -2 CopytoCipboard | et
Right click on the problem and seBiange State > Confirmiedm the Explain Problem

pop-up menu. Change State d hobficed
N

(e}
(72}
-

ec

Now we Owitlethatipsoblem. You can see the state is updated in Fixed
problem set table: Not a problem
F73 @ Unsafe format specifier parse.cpp Confirmed 70 Format

jparse.cpp(ls?]: error #12329: specify field width in format specifier to avoid buffer overflow on argument 3 in call to "fscanf"

Reducing Clutter with Filtering

Filters allow you to focus on the problems you are interested in and hide the problems you want to ignore.

Once a problem has been investid there is usually no reason to loo* §
at it again. One of the nicest uses for filters to hide all the problem Investigated

you are finished investigating. Go all the way to the bottom of the f Inve.stigatx.n_d 1 item(s]
window and click on the Inesgaed | ofinvestigated 1a4item(s) ot he
filter.

Wh_en you do that, the filter item redraws to indicate that it is Investigated Al

active: Not investigated 144 item(s)

Notice how that problem we markeCamfirmedlisappeared from the table of problem sets when we did that. It a good idea to
keep this filter set like this while you work on analyzing results.

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

The first several filters, Severity, Problem, Source, State, and Category, correspond to colubha®frptbblean sets. You can
hide all rows in the table that do not match a specific value Al
some column. Click on the second line in the Source filter
(apigeom.cpp). It will look like this:

apigeom.cpp 8 item(s)

Notice how the problem set table has also redrawn to shigyproblems in this source file. You can turn off a filter by clicking on
the Allbox, but leave it turned on for now.

Investigating a Second Problem

Take a look at another problem in the solution. This time pick problem P94, which should beotteeysmcand see in the table
of problem sets:

Pa4 @ Mull pointer dereference (possible) apigeom.cpp; vector.cpp News 60 Pointer

apigeom.cpp(165): error £12172: dereference of pointer "normals" which is possibly set to null at (file:apigeom.cpp line:143)
vector.cpp(77): error #12172: dereference of pointer "a" which is possibly set to null at (file:apigeom.cpp line:143)

This problem is a little more interesting. As you can see, it has two source locations in different files. The preblem typel |
pointer dereference (possi bleswhéreapoifitéres derefelenceddhatsould pogsibly eset de s cr
to null. In both cases the place where the pointer was possibly set to null is the same (apigeom.cpp, line 143).

This illustrates why we call this the tablprablem setéstead ofproblemsHere SSA has combined two related problems into
one problem set because it is likely that both problems could have a common solution.

Letds investigate to see what is happening herterelateds before,
source code:

D Description | Source Function | State

FX106 Memory write apigeom.cpp:143 void rt_sheightfield(void *, struct vector,int,int,double *,double,double} MNews
#X108 Null dereference apigeom.cpp:165 void rt_sheightfield(void *, struct vector,int,int,double *,double,double} MNews
#X123 Null dereference |5 vector.cpp:77 void VMorm(struct vector) News

Here we see three code locations. One is the place where the pointer was assigned (Memory write) and the otheetwo places ar
where a null pointer value could be dereferenced. Take a closer locklmkinghone of thesend selectindexpand All Code
Snippetsrom the popup menu:

10

INTEL&ARALLEL STUDIGE EVALUATION GUIDE

Static Security Analysis (SSA)

X106 Memory write apigeom.cpp:143 void rt_sheightfield(void * struct vector,int,int,double * double,double} Mews

141

142 vertices = (vector *) malloc (m*n*sizeof (vector)):

143 normals = (vector *) malloc(m*n*sizeof (vector)):

144

145 offset.x = ctr.x - (wx / 2.0);:
E1X108 Mull dereference apigeom.cpp:165 void rt_sheightfield{void *, struct vector,int,int,double *,double,double) MNews

163 /* build normals from vertex list =/

164 for (x=1; x<m; x++) {

165 normals[x] = normals[(n - 1l)*m + =] = rt_wector (0.0, 1.0, 0.0});

la6 }

167 for (y=1; y<n; y++) {
E1X123 Null dereference [vector.cpp:77 void VNorm(struct vector *) Hew

75 flt 1len;

76

T7 len=sgrt{({a—->x * a->xX}) + (a->y * a->y) + (a—>=z * a->»z2)}))r:

T8 if (len != 0.0} {

79 a->x /= len;
Now the problem is starting to become apparent. Tarll memor y
pointer when an application runs out of memory. Appdremtys appl i cation didndt check for th
second snippet indicates that we are using what lignoeats | i ke t
in the same file and subroutine. Whataboutthed r d sni ppet ? We can see this is using

normals pointer variable? And this is a completely different source file (vector.cpp). How is that related toatlat malloc ¢

Here you must remember that SSA isgdaiholeprogram, cross file analysis. It can analyze the flow of data values through
procedure call s, even across files. But how did the value t

SSA helps you answer questions like thisbypidvng otr acebackdé informati onSourcéso see th
view. Rightlick one of these code references and s¥lest Sourcéom the popup menu. This is what you will see:

Summary Sources

3 Bl void rt_sheightfield(void *,struct vector,i ...
160 i
161
162 /* build normals from vertex list */
163 for (k=1; =m<m; x++) {
¢ memaistmi - momaistm - ipwm o+) = roveetorioio, s i)
165} |
166 Tor (v=1l; wy<n; vi+) {
167 normals(y*m] = normals(y*m + (m-1)] = rt_vector(0.0, 1.0, 0.0);
168 i
169 for (y=1: y<(n-1): y+4) { -

137 vector offset; = [l Blvoid rt_sheightfield(void *,struct vector,i ...

138 apiflt xinc, yinc;

136 int x, y, addrs

140

141 vertices = (vector *) malloc(m*n*sizeof (vector)):

143 L

144 offset.X = ctr.X - (WX / 2.0):

145 offset.y = ctr.z - (wy / 2.0);

146 offset.z = ctr.ys

147 =
K »

D | Description « | Source Function State

X113 Memorywrite B apigeom.cpp:142 void rt_sheightfield(void =,struct vector, int,int,double =,double,double) New
X115 Null dereference B apigeom.cpp:164 void rt_sheightfield(veid *,struct vector,int,int,double =,double,double) New
X130 Null dereference B vector.cpp:77 void VNarm(struct vectar *) New

11

INTEL&PARALLEL STUDIGEEVALUATION GUIDE

Static Security Analysis (SSA)

This is the Sources view. It contains two phindows, each of which is showing a section of source code and (on the right) a
Traceback. At the top left you see a highlighted box thaSeaysesTo the left of that you see another box that sBymmary
If you click the Summary box it takes lyack to the summary view we were looking at earlier.

Neither of these code windows shows the source location we are interested in. However, down at the bottom is the@tame table
code locations we saw in the summary view. If you look closely s aviittle red tag on one, and a blue tag on another. This
tells you which code locations are on display. The same red and blue tags are shown in the upper left in the code windows.

We are interested in the code locatiorentor.cpp . Doublelickt. Now the source for that code reference appears. You
could also right click on it and chd®eteas Related ObservatimrSet as Focus Observationm the popup menu. The red tag is
for the focus observation and the blue tag is for the related obset i o n . Hereds what you see:

Look to the right of the middle pane, at the windows thatBagebackn it. This contains three lines. Go ahead and click on
these lines one after another. You can see the left code window refresh itself witht differee positions. The one on the end
of the traceback is in fact the same source location you see in the top screen, the place where malloc was called.

The traceback is showing you the connections between where you started (the malloc) and widaé yptee possibly null
dereference of 0ao). The interesting place is the middle po

12

