
 INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

  

Static Security 

Analysis (SSA) 



 

2 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

What is Static Security Analysis (SSA)? 
Static security analysis (SSA) available with Intel® Parallel Studio XE, attempts to identify errors and security weaknesses 

through deep analysis of source code.  SSA is primarily aimed at developers and QA engineers who wish to harden their application 

against security attack.  Since many security weaknesses are also bugs, SSA provides an effective way to discover defects, 

especially in code that is hard to exercise thoroughly with tests.  SSA can also detect race conditions resulting from misuse of 

parallel programming frameworks such as OpenMP and Intel Cilk Plus. 

While the variety of security attacks is practically unlimited, a number of common patterns have emerged.  Probably the single 

biggest root cause of security weaknesses is the failure to adequately screen input data, especially data obtained from a remote 

user.  Once an attacker has found an application weakness, they may be able to exploit that weakness to inject and execute 

malicious code.  This often involves corrupting memory through a buffer overflow or other kind of bounds violation.  Thus two broad 

themes emerge: protecting the integrity of memory under all circumstances and avoiding unsafe use of unchecked input. 

Many patterns of unsafe usage can be discovered through static analysis.  The main advantage of static analysis over dynamic 

analysis is that it examines all possible execution paths and variable values, not just those that are provoked during testing.  This 

aspect of static analysis is especially valuable in security assurance, since security attacks often exercise an application in 

unforeseen and untested ways.  SSA can detect over 250 different error conditions. 

This document is an introductory tutorial describing the static security analysis feature of the Intel® Parallel Studio XE.  It provides a 

brief description of the goals of the product feature and walks through an end-to-end example showing how it is used. 

Topic 

How Does SSA Work? 

Setting Up for SSA 

C++ Tutorial 

Running SSA and Opening the Results in Intel® Inspector XE 

Interacting with the Analysis Results 

Investigating a Problem 

Reducing Clutter with Filtering 

Fixing a Problem and Rescanning 

Fortran  Tutorial 

Additional Resources 

 

How Does SSA Work?  
Static security analysis is performed by the Intel® C++ and the Intel® Fortran Compilers operating in a special mode.  In this mode the 

compiler dedicates more time to error analysis and bypasses the instruction generation process entirely.  This allows it to find errors 

that go undetected during ordinary compilation.  SSA requires your code to compile without serious errors using the Intel Compiler, 

but you do not execute the results of this compilation.  You do not need to use Intel compiler to create your production binaries in 

order to take advantage of SSA.  We will begin the tutorial with showing how to prepare an application for SSA. 



 

3 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

SSA can be done on a partial program or a library, but it works best when operating on an entire program.  Each individual file is 

compiled into an object module, and the analysis results are produced at the link step.  The results are then viewed in Intel® Inspector 

XE. 

The results of static analysis are often inconclusive.  The tool results are best thought of as potential problems deserving 

investigation.  You will have to determine whether a fix is required or not.  The Intel Inspector XE GUI is designed to facilitate this 

process.  You indicate the results of your analysis by assigning a state to each problem in the result.  Intel Inspector XE saves the 

state information in its result files. 

Over time the source will change and you will want to repeat the analysis.  The first time you open your new analysis result in Intel 

Inspector XE, it automatically calculates a correspondence between the previous result and the new result.  It uses this 

correspondence to initialize the state information for the new result.  This means you do not have to investigate the same issues 

over and over again. 

When you decide a problem does require fixing you should report it into your normal bug tracking system, just as you would report a 

defect detected by an executable test.  Intel Inspector XE is not a bug tracking system.  The state information tracks your progress 

in investigating the result of analysis.  What you do with your conclusions is outside the scope of SSA and the Intel Parallel Studio 

XE.. 

Setting Up for SSA 
The set up process is usually fairly simple, but it can be quite complicated, depending on the situation.  We recommend you modify 

your build procedure (whatever it is) to create a new build configuration for SSA.  The term build configuration refers to a mode of 

building your application, using specific compiler options and directing the intermediate files to specific directories.  Most applications 

have at least two build configurations: debug and release.  You will want to create one more for SSA.  The SSA configuration must 

build with the Intel compiler with additional options set to enable SSA. 

Please note the distinction between creating a new build configuration and building an existing configuration with additional 

options.   If you build, say, your debug configuration with the additional options that enable SSA then you will get analysis results (as 

long as your debug configuration builds with the Intel compiler).  This is a perfectly good way to do an initial product evaluation.  

However, itõs awkward to work this way on an ongoing basis, because the object modules produced by SSA will overwrite your 

debug-mode object modules every time you run SSA.  Just as you want to keep debug object modules separate from release object 

modules, you will want to keep debug object modules separate from SSA object modules.  If you are going to use SSA on an ongoing 

basis, you will want to get set up properly. 

The process for creating a new build configuration will be different for each application.  If your application is built under an IDE, such 

as Microsoft* Visual Studio* or Eclipse*, the IDE makes it very easy to add new build configurations.  The sample applications used in 

this tutorial can be built under Visual Studio on Microsoft* Windows* OS or with a make file on Linux* OS.  We will walk through the 

steps needed to update this make file for SSA. 

If your application build is very complex and you donõt feel confident that it can be modified safely, there is an alternative set up 

method.  You can execute your normal build under a òwatcheró utility called inspxe-inject.  This application intercepts process 

creations and recognizes all the compilation and link steps performed during your build.  It records this information in a build 

specification file.  This file can be supplied as input to another utility, inspxe-runsc, which invokes the Intel compiler to repeat the 

same build steps as your original build did.  These utilities are not explained in this tutorial. 

Starting the Tutorial 



 

4 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

This tutorial can be executed on Windows or on Linux OS.  It can also be done using a C++ or Fortran sample application.  You should 

pick the configuration(s) you prefer.  The C++ and Fortran tutorials are described separately.  The differences between Linux OS and 

Windows OS are small and these cases are described together.  When we come to a step that is done differently on Windows and 

Linux OS, we will say something like òOn Windows OS, do éó 

To follow the C++ tutorial, continue in the following section.  To follow the Fortran tutorial, go to the Fortran  Tutorial section. 

C++ Tutorial 
We will be using a sample application called òtachyon_ssaó.  You can find it below the Intel Inspector XE root install directory, below 

the òsamplesó subdirectory.  Unzip this application to some directory on your disk. 

We will start by getting set up for SSA.  This is done differently on Windows and Linux OS.  For Windows OS read the following 

section.  For Linux OS, goto Setting up for SSA Using a make File on Linux* OS. 

Setting up for SSA Using Microsoft* Visual Studio* on Windows* OS  

We will go through the setup process using Visual Studio solution tachyon.sln that is supplied with the sample program.  Start by 

opening this solution in Visual Studio.  If you are using Visual Studio 2008 or Visual Studio 2010 then Visual Studio will need to 

convert for solution file from Visual Studio 2005 format.  Let it go ahead and do this conversion. 

Create a new build configuration as follows:  

1. Select the Build > Configuration Manager menu item to open the configuration manager 

2. In the upper left drop-down control, select Newé. 

3.  In the New Solution Configuration dialog box, set the name to SSA and set to Copy setting from to Debug. 

4. Click OK to dismiss the New Solution Configuration dialog and then Close to dismiss the Configuration Manager. 

Before you can set the options on your new build configuration, you need to set the project to build with the Intel compiler.  Follow 

these steps: 

1. Right click the tachyon project in the solution explorer and select the Intel C++ Composer XE 2011> Use Intel C++é menu item 

and click OK on the confirmation dialog.  You will see that the icon for the project in the solution explorer has changed to 

indicate it will be built using the Intel compiler. 

Now you are ready to set the properties for SSA.  Right click the tachyon project and select Propertiesé  Open the C++ > 

Diagnostics property page.  You will see the following dialog: 



 

5 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

 

Set the Level of Static Security Analysis option to All Errors and Warnings (/Qdiag-enable:sc3) and click OK. 

Thatõs it; you are now set up for SSA. 

For information on setting up applications built using a command line script or make file, see the following section explaining the 

setup process on Linux OS. 

Setting up for SSA Using a make File on Linux* OS 

The sample application comes with a make file that can be used to build the application on Linux OS.  To save time, we have included 

two versions of the make file.  One is the original make file, tachyon.mk.  This make file builds the application using the gcc compiler.  

The other is the updated make file, tachyon_ssa.mk, that adds a new build target, SSA.  The SSA build target is just like the debug 

build target except for these changes: 

¶ It builds using the Intel compiler 

¶ It adds the additional option ò-diag-enable:sc3ó 

¶ It puts the intermediate files in the SSA subdirectory. 

You can compare the two make files to see the differences.  This illustrates the changes that are needed to update a make file to 

prepare for SSA. 



 

6 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

Running SSA and Opening the Results in Intel® Inspector XE 
Now that you are set up, all you have to do is build your SSA build configuration to perform analysis.  On Windows OS, you can do this 

by right-clicking  the tachyon project in the solution explorer and choosing Build.  On Linux OS, you can do this by performing the 

following steps: 

1. Open a command shell 

2. Set the environment variables for the Intel compiler by executing the iclvars.sh  script in the compiler bin directory, 

supplying the ia32  option. 

3. Execute make ïf tachyon_ssa.mk  

TIP:  keep this command window open for later operations. 

On Windows OS, the Intel® Inspector XE automatically opens a new result as soon as the build completes.  On Linux OS, type 

inspxe - gui  to invoke the Intel Inspector XE and then use the File > Open menu to open the result.  By default, the file you want 

to open is called r000sc. inspxe , and is contained in a directory named r000sc  below the root directory of the tachyon project. 

Interacting with the Analysis Results 
The remainder of this tutorial is almost identical for Windows and Linux OS.  The main difference is that on Windows OS, the Intel 

Inspector XE GUI is embedded within Visual Studio, while on Linux OS the GUI runs as a stand-alone program.  The look of the 

individual Intel Inspector XE windows is almost identical on Windows and Linux OS. 

The initial window you will see will look something like this.  (Note: you might have to drag the scrollbar up to the top to get the right 

line on top.) 



 

7 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

 

This window consists of three main areas.  The upper left pane is the table of Problem Sets.  This is your òto doó list, the things you 

need to investigate.  The lower left pane shows the code locations corresponding to the currently selected problem set.  The right 

pane shows the filters.  It controls what problem sets are displayed and which are hidden. 

You can sort the table of problem sets by clicking on any of the column headers.  By default the problem set table is sorted by 

weight.  The weight is a value between 1 and 100 which reflects how interesting a problem is.  Problems that can do more damage 

have higher weight.  Problems that are more likely to be true problems (as opposed to false positives) are also given higher weight.  

So the weight provides a natural guidance for your order of investigation. 

Investigating a Problem 
Letõs start with an easy one.  P73, the fourth one on the list, is an unsafe format specifier.  Letõs see what we can learn about this 

problem. Initially, all we know about the problem is summarized in the table entry: 

 



 

8 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

Unsafe format specifier is the short description of the problem.  The full description is shown in the shaded area.  The òNewó entry in 

the state column indicates that this problem was discovered for the first time in this analysis run and has not yet been investigated.  

The 70 weight value indicates the weight.  The category of problem is òFormató, which means it is related to misuse for printf-style 

format specifications. 

Click on this problem to select it.  The lower pane refreshes itself to show the source code locations related to this problem.  Hereõs 

what it says: 

 

Here we see the source location (file parse.cpp, line 187).  We also see the role that this source reference plays in the problem.  

Format mismatch indicates that this is a place where a format string was used.  It also shows the name of the function that contains 

the line (GetString) and its parameter signature. 

One way we could get more information about a problem is to read an explanation of what 

that problem type means.  Some SSA errors are pretty technical and require explanation.  To 

see the explanation for this problem type, right click the problem.  That brings up this pop-up 

menu:  

Select Explain Problem to open a help topic that explains this problem in detail.  This is the 

help topic for this particular problem type: 

 



 

9 

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

As you can see, the problem type reference material explains more fully what the precise error condition is and its potential 

consequences.  It explains more fully the role the various code locations play in creating the problem, and provides an example that 

demonstrates the problem. Where possible, it also provides better alternatives to avoid this issue 

The next thing we need to do is determine whether this problem is really present in our application.  To do that, we need to look at 

the source code.  The fastest way to do that is to expand the code reference in the lower pane to expose a small snippet at the 

referenced location.  There are two ways to do this.  One is to click the plus sign in the ID column.  The other is to right-click on the 

item in the lower pane and select òExpand All Code Snippetsó from the pop-up menu.  After you do this, you will see this: 

 

This is pretty clear.  The highlighted call to fscanf has a format string with a ò%só format specifier.  This reads input characters up to 

the next newline and stores the data in the array òdataó.  There is no guarantee that the number of characters read will not overflow 

the bounds of the array, so this statement could corrupt memory.  We got lucky here, because the code snippet contained all we 

needed to know about this problem.  We will see later how we see more of 

the source when we need to. 

Since we have confirmed that this is a real error, letõs record our conclusion.  

Right click on the problem and select Change State > Confirmed from the 

pop-up menu.  

Now weõre done with that problem.  You can see the state is updated in the 

problem set table: 

 

Reducing Clutter with Filtering 
Filters allow you to focus on the problems you are interested in and hide the problems you want to ignore.   

Once a problem has been investigated there is usually no reason to look 

at it again.   One of the nicest uses for filters to hide all the problems 

you are finished investigating.  Go all the way to the bottom of the filter 

window and click on the òNot investigatedó item inside the Investigated 

filter.  

When you do that, the filter item redraws to indicate that it is 

active:  

Notice how that problem we marked as Confirmed disappeared from the table of problem sets when we did that.  It a good idea to 

keep this filter set like this while you work on analyzing results. 



 

10  

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

The first several filters, Severity, Problem, Source, State, and Category, correspond to columns in the table of problem sets.  You can 

hide all rows in the table that do not match a specific value in 

some column.  Click on the second line in the Source filter 

(apigeom.cpp).  It will look like this:   

Notice how the problem set table has also redrawn to show only problems in this source file.  You can turn off a filter by clicking on 

the All box, but leave it turned on for now. 

Investigating a Second Problem 
Take a look at another problem in the solution.  This time pick problem P94, which should be the second one you now see in the table 

of problem sets: 

 

This problem is a little more interesting.  As you can see, it has two source locations in different files.  The problem type is òNull 

pointer dereference (possible)ó.  The full description describes two places where a pointer is dereferenced that could possibly be set 

to null.  In both cases the place where the pointer was possibly set to null is the same (apigeom.cpp, line 143). 

This illustrates why we call this the table of problem sets instead of problems.  Here SSA has combined two related problems into 

one problem set because it is likely that both problems could have a common solution.  

Letõs investigate to see what is happening here.  As before, select this problem set and look at the lower pane to see the related 

source code: 

 

Here we see three code locations.  One is the place where the pointer was assigned (Memory write) and the other two places are 

where a null pointer value could be dereferenced.  Take a closer look by right-clicking one of these and selecting Expand All Code 

Snippets from the pop-up menu:  



 

11  

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

 

Now the problem is starting to become apparent.  The memory write assigned a value from the routine òmallocó.  Malloc returns a null 

pointer when an application runs out of memory.  Apparently this application didnõt check for that case before using the pointer.  The 

second snippet indicates that we are using what looks like the same pointer variable here (ònormalsó), 20 lines below the assignment 

in the same file and subroutine.  What about the third snippet?  We can see this is using a pointer (òaó), but how is it related to the 

normals pointer variable?  And this is a completely different source file (vector.cpp).  How is that related to that malloc call? 

Here you must remember that SSA is doing whole-program, cross file analysis.  It can analyze the flow of data values through 

procedure calls, even across files.  But how did the value that was received from malloc get into the pointer named òaó? 

SSA helps you answer questions like this by providing òtracebackó information.  To see the traceback information, go to the Sources 

view.  Right-click one of these code references and select View Source from the pop-up menu.  This is what you will see: 

 



 

12  

 

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE 

Static Security Analysis (SSA) 

This is the Sources view.  It contains two pairs of windows, each of which is showing a section of source code and (on the right) a 

Traceback.  At the top left you see a highlighted box that says Sources. To the left of that you see another box that says Summary.  

If you click the Summary box it takes you back to the summary view we were looking at earlier. 

Neither of these code windows shows the source location we are interested in.  However, down at the bottom is the same table of 

code locations we saw in the summary view.  If you look closely you will see a little red tag on one, and a blue tag on another.  This 

tells you which code locations are on display.  The same red and blue tags are shown in the upper left in the code windows. 

We are interested in the code location in vector.cpp .   Double-click it.  Now the source for that code reference appears.  You 

could also right click on it and choose Set as Related Observation or Set as Focus Observation from the pop-up menu.  The red tag is 

for the focus observation and the blue tag is for the related observation.  Hereõs what you see: 

 

Look to the right of the middle pane, at the windows that says Traceback on it.  This contains three lines.  Go ahead and click on 

these lines one after another.  You can see the left code window refresh itself with different source positions.  The one on the end 

of the traceback is in fact the same source location you see in the top screen, the place where malloc was called. 

The traceback is showing you the connections between where you started (the malloc) and where you ended up (the possibly null 

dereference of òaó).  The interesting place is the middle point in the traceback.   


























